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We consider two single-species reaction-diffusion models on one-dimensional 
lattices of length L: the coagulation-decoagulation model and the annihilation 
model. For the coagulation model the system of differential equations describing 
the time evolution of the empty interval probabilities is derived for periodic as 
well as for open boundary conditions. This system of differential equations 
grows quadratically with L in the latter case. The equations are solved analyti- 
cally and exact expressions for the concentration are derived. We investigate the 
finite-size behavior of the concentration and calculate the corresponding scaling 
functions and the leading corrections for both types of boundary conditions. We 
show that the scaling functions are independent of the initial conditions but do 
depend on the boundary conditions. A similarity transformation between the 
two models is derived and used to connect the corresponding scaling functions. 

KEY WORDS: Reaction~:liffusion systems; finite-size scaling; nonequilibrium 
statistical mechanics; coagulation model; annihilation model. 

1. INTRODUCTION 

Since Smoluchowski tl) demonstrated that the macroscopic phenomenon of 
diffusion can be explained on the microscopic scale by Brownian motion of 
particles, reaction-diffusion systems have been a field of intense research in 
nonequilibrium statistical mechanics. There are numerous applications in 
physical chemistry and physics: in deposition-evaporation phenomena, tz'~) 
diffusion-controlled chemicaI reactions/4-6~ catalysts, ~7) or in the descrip- 
tion of polymers, (SJ to name only a few. Recently experimental studies of 

t UniversitS.t Bonn, Physikalisches Institut, D-53115 Bonn, Germany. 
2 Universit~.t Hannover, Institut f/ir Theoretische Physik, D-30167 Hannover, Germany. 
3 Freie Universit~.t Berlin, Fachbereich Physik, D-14195 Berlin, Germany. 

1429 

0022-4715/95/0300-1429507.50/0 �9 1995 Plenum Publishing Corporation 



1430 Krebs et  al.  

one-dimensional systems have been reported, c%1~ In these experiments, the 
particles correspond to excitons moving along "chains" inside a crystal. In 
this way, direct applications are found for calculations that are restricted to 
one dimension because of technical difficulties. 

Since analytic calculations are often cumbersome, even in the simplest 
models exact results are very scarce. Monte Carlo simulations and mean- 
field calculations or truncation schemes for an infinite hierarchy of n-point 
functions c~) have been the most promising methods for a long time. 

Reaction-diffusion systems can be described by lattice models. The 
dynamics is given by a master equation for the probability P({/~}, t) to 
have the configuration {fl} realized at time t. (L2'13) 

Concerning one-dimensional systems, the master equation can be 
mapped onto a Euclidean SchrSdinger equation: 

Op , 
({iS} t)=--HP({/~},t) (1.1) 

where the Hamiltonian is the one of a quantum chain. (~4) This formulation 
has been used already to study different models, for example, in refs. 2, 15, 
and 16. It has the advantage that many techniques developed for the 
investigation of quantum chains can be applied to study reaction-diffusion 
systems and vice versaJ m 

The Hamilton formalism allows us to define the equivalence of two 
reaction-diffusion models, namely that the corresponding Hamiltonians are 
related by a similarity transformation. In general the existence of such a 
transformation does not imply a simple rule of correspondence for observ- 
ables: operators as well as initial conditions have to be transformed. As an 
example, we show in the present paper that the coagulation and the 
annihilation models are equivalent and derive the transformation law for 
observables explicitly. 

On the other hand, methods which have been restricted to equilibrium 
statistical mechanics can be applied to a new class of problems. In this 
context quantum groups and Hecke algebras, which appear quite artifi- 
cially in equilibrium problems (since unusual boundary conditions or bulk 
interactions have to be introduced) and have mainly been of mathematical 
interest up to now, arise naturally in the present case) ~8) It is possible as 
well to use Bethe Ansatz techniques in nonequilibrium problems. (~9'2~ 

In this paper, we will concentrate on systems with a single type of 
particle (denoted by A) and the following reactions: 

�9 Diffusion: 

A + ~ - ~ + . 4  
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�9 Coagulation and decoagulation: 

A +A-.-~-A 

�9 Annihilation: 

A + A ~ ; ~  

where ~ denotes a state without any particles. 
We are interested in the dynamics of these systems. Therefore the most 

important physical quantity is the particle concentration (i.e., the mean 
number of particles) as a function of time. One way to compute the con- 
centration would be to diagonalize the Hamiltonian directly. This turns out 
to be very complicated because one has to know all eigenvectors. Therefore 
we use a different approach to the coagulation model proposed by ref. 21: 
we investigate the probability of finding empty intervals on the lattice. The 
time evolution of these empty interval probabilities is given by a closed set 
of linear differential equations which can be decoupled into L sets of L -  1 
equations in the case of periodic boundary conditions. For open boundary 
conditions, however, one obtains a set of L(L + 1)/2 equations. It is the 
first time that such a system is solved in the theory of reaction-diffusion 
processes. 

The long-time behavior of the concentration can be studied by a finite- 
size scaling approach which allows us to extrapolate from finite systems to 
infinite ones. The concentration c(t) for an infinite system with a massless 
spectrum is characterized by an algebraic decay 

c ( t ) ~ _ t  ~ 

The exponent ~ can be determined with the help of a finite-size scaling 
expansion of the concentration. In the theory of chemical models finite-size 
expansions of this type have been introduced by Alcaraz et aL 114) 

Finite-size scaling was originally proposed in equilibrium statistical 
mechanics. There one is interested in phase transitions, i.e., the singular- 
ities of thermodynamic quantities at the critical temperature To. These 
singularities become smooth if the system has a finite size. The idea is to 
extract critical exponents of an infinite system by studying how thermo- 
dynamic quantities--in particular, the ground-state energy--vary with 
the size of the finite system/2~'23) The behavior of the finite system is then 
determined by the ratio of the system size L and the correlation length ~, 
which diverges at the critical point. Therefore finite-size scaling studies in 
equilibrium statistical mechanics are always characterized by the presence 
of a large length scale, the correlation length. 
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The scaling limit we consider in the investigation of reaction~zliffusion 
processes differs from the one used in equilibrium statistical mechanics: 
Here we relate the limits t -o co and L ~ oo by keeping the scaling variable 
z = 4Dt /L  2 constant while t and L go to infinity. D denotes the diffusion 
constant. This limit can be understood as comparing the dynamics of a 
system with a pure diffusion process described by D A c ( t ) = 8 , c ( t ) .  The 
average of the square of the distance traveled by a particle in time t is then 
given by ( ( x , - x o )  2) =2Dt .  Thus z = 4 D t / L  2 appears naturally as the 
square of the "correlation length" divided by L 2. It is obvious that this kind 
of limit is only reasonable in the case of diffusion-limited systems where the 
decay to the steady state is algebraic and thus involves a diverging 
"correlation length." In the present work we therefore have to restrict our- 
selves to systems with diffusion and pure coagulation or diffusion and pure 
annihilation, respectively. In the presence of particle-creating reactions 
(i.e., decoagulation, birth, or pair production) the systems are no longer 
diffusion limited and no large length scale appears. 

Applying the scaling hypothesis to the concentration of particles gives 

c(z, L)  = LX[ro(z )  + L - Y F ( z )  + -.-3 (1.2) 

Here F o denotes the scaling function, x is the scaling exponent, and 
L - Y F ( z )  is the leading correction term. Fo and the correction function F 
depend only on the scaling variable z. The scaling exponent x and the 
"critical" exponent ct, which describes the large-time behavior of an infinite 
system, are connected by the scaling relation 

x 
ct = -  (1.3) 

2 

Similar to equilibrium statistical mechanics, the existence of finite-size 
scaling relations allows the numerical determination of critical exponents 
(a in the present case) from finite lattices. The question of universality 
arises immediately. Do the exponents and scaling functions depend on the 
details of the model and the initial conditions? 

Our results are published in two parts. The present article contains the 
results we have achieved by analytical calculations. In the second article we 
focus on those situations where only numerical methods can be applied. 
Monte Carlo simulations and extrapolations from finite lattices are used to 
investigate the dependence of the scaling function on the choice of the 
reaction rates (universality) as well as on the initial conditions (self- 
organization). 

The present article is organized as follows: In Section 2, we present the 
general framework we use to study reaction-diffusion processes. In Sec- 
tion 3, we define the models, derive the corresponding Hamiltonians, and 
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investigate their spectra. These results are used to construct the similarity 
transformation between the coagulation model and the annihilation model 
in Section 4. Using the empty interval approach in Section 5, we solve the 
resulting system of differential equations for the coagulation model for both 
periodic and open boundary conditions. The finite-size scaling behavior of 
the coagulation and annihilation models is investigated in Section 6. In an 
appendix we present a derivation of the scaling function based on the 
continuous version of the coagulation model. We close with a discussion of 
our results, where open questions and possible directions of further research 
are outlined. 

2. M A S T E R  EQUATION A N D  O N E - D I M E N S I O N A L  
Q U A N T U M  CHAINS  

The models studied in this paper are defined on an one-dimensional 
lattice of length L. To each site i we attach a variable ~ i  taking two values: 
fli= 0 corresponds to a vacancy, fl;= 1 to a particle of type A. 

The dynamics of the system is determined by the rates for the allowed 
reactions: The probability that a state (~, fl) on two adjacent sites will 
change into the state (~, 6) after one unit of time is denoted by 

=,~. (~, ~):~ (~, 6) (2.1) F ~,,,~, 

So we only consider nearest-neighbor interactions. All reactions changing 
the state (c~, fl) into any other state are summarized in the rate F=,a: 

1 

r~.~ = 2 '  E~,.~=.B (2.2) 
},,6 = 0 

where the prime is always used to indicate that in the sum the case (ct, f l )= 
(?, 6) is excluded. This definition ensures the conservation of probabilities. 
Clearly all rates have to be nonnegative and real. 

Let P({fl}; t) be the probability to find the system at time t in the 
configuration {fl} = {ill, f12 ..... tic}. The dynamics of the system is then 
determined by the following master equation ~4~ describing the time evolu- 
tion of the probability distribution P({ fl }; t): 

Ot k = l  

3 ~tk,~tk+ I = 0 

(2.3) 

All arithmetic operations on the c~ and fl~ are performed modulo 2. 
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In this article we deal with periodic as well as with open boundary 
conditions. Different choices of boundaries are reflected in the upper limit 
of the summation. For periodic boundary conditions, the summation has 
to be performed up to k = L. For open boundary conditions the sum only 
runs up to L -  1. 

2.1. Mapping on a Schr6dinger  Equation 

It is possible to rewrite the master equation in the form of a Euclidean 
Schr6dinger equation with a quantum-chain Hamiltonian. The configura- 
tion space is constructed by attaching a two-dimensional vector space V,. 
to each site i. The vector (o ~) corresponds to a vacancy, (0) to a particle. 
The configuration space has the structure of an L-fold tensor product 
VI | . . .  | VL. We choose an orthonormal basis, which we are going to 
call the spin basis~2~: 

1{/~} ) = 1/~, ..... /3L); ({~} I {/~'} ) = 6~a}.tB, i (2.4) 

and define the ket state 

IP)  = ~ P({/~}; t ) I{ / /} )  (2.5) 
{p} 

Using the 2 x 2 matrices E k~ with entries (Ekt),,,, = 6k,,,6~ .... it was shown in 
ref. 14 that a quantum-chain Hamiltonian H can be defined as follows: 

L 

H =  ~ Hi (2.6) 
i = l  

' [ ' 1 H'==2p. F~,.PET'~'E~f, - ~".' --~,.a~,rr "~='~PP'6~i+, (2.7) 
= y , 6 = O  

The operator H operates on the L-fold tensor product V, | . . .  | VL. The 
Hi operate locally on Vi| V~+ l- The master equation (2.3) can now be 
replaced by the Euclidean Schrbdinger equation: 

d 
Ot IP(t)> = - n  IP(t)> (2.8) 

Thus the time evolution of the system is given by 

IP(t)> = e x p ( - H t ) I P o >  (2.9) 

where lPo> denotes the initial state. Since 1P> already denotes a proba- 
bility distribution, whereas in quantum mechanics the wave function 
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represents a probability amplitude, the calculation of expectation values 
differs from ordinary quantum mechanics. Let X be an observable of the 
system. Instead of <X>(t )=  < ~ 1 X I ~ > ,  as in quantum mechanics, the 
expectation value of X is now defined as 

<X>(t)= ~ X({,8}) P({/}}; t) (2.10) 
{p} 

If we introduce the bra ground state 

<Ol-- ~ <{#}1 (2.11) 
{p} 

we can write the expectation value (2.10) in the form 

<X>(t) = <01X IP(t)> (2.12) 

The notion of <0l as a bra ground state is justified by the fact that 

<0l H = 0  (2.13) 

which is a simple consequence of the conservation of probabilities (2.2). 
The calculation of expectation values can often be simplified as 

follows. If X is an operator with matrix elements < {c~}l X l{fl} >, we define 
a new operator )7 with matrix elements 

{),} 
(2.14) 

It is clear that )( is diagonal. Each diagonal element is obtained from the 
matrix representing X by summing up all entries of the corresponding 
column. The expectation values of both operators are equal, namely 

<Ol x l{#}> = <ol s (2.15) 

The proof is straightforward. As a consequence of this identity one has to 
consider only diagonal operators. 

3. TWO-STATE HAMILTONIANS 

We will now derive the Hamiltonians for both models considered in 
this article: the coagulation~lecoagulation model and the annihilation 
model. The reaction rates are always chosen to be left-right symmetric, i.e., 
F~. ~'~ p-- F~.= In both models we have the following: 
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�9 Diffusion with rate F~ ~ = D = 1 

~ + A ~ A + ~  

The diffusion rate can be used to fix the time scale in the models and thus 
is set equal to 1. 

3 .1 .  The Coagulation-Decoagulation Model 

We start with the coagulation-decoagulation model, where diffusion 
and the following processes are possible: 

�9 Coagulation with rate Fol'~ = c 

A + A ~ f,~ + A 

�9 Decoagulation with rate F~ = d 

(,~3 + A ~ A + A 

This model has been discussed in various contexts. In refs. 4, 24, and 25 
results of Monte Carlo simulations are reported. Analytical calculations have 
been performed predominantly for infinite, continuous models, t2~'26-28) 
where in ref. 21 the formalism of the empty interval probabilities was 
described for the first time. We will use this formalism in Section 5. In refs. 
29 and 30, approximations for the density functions of the model are 
derived. Exact results for a lattice formulation of the coagulation model 
can be found in ref. 31 as well as in ref. 32, where the lattice model is 
investigated by means of probability arguments. Recently field-theoretic 
methods have been applied to the coagulation model ,  t33'34) 

The Hamiltonian of the coagulation model can immediately be 
calculated from the definitions (2.6) and (2.7). It is convenient to rewrite it 
in terms of Pauli matrices: 

L 

Hoo.~ = - "  Y. ISa,~a~+, + a;!'a"+, + (1 - c + d) a . a . + ,  
i=1  

+ e(a, + a,+~)-- 1 - c - d  

+(ca + +daF)(1-a~+,)+(1-a~)(ca++t  +aaF+,)] (3.1) 

Notice that this operator is non-Hermitian, but it can be brought to a 
Hermitian form by a rescaling of the spin basis. For this purpose we use 
the transformation G = g |  a, where g is a diagonal matrix given by 

g = ( ;  (c/0),/2) (3.2) 
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such that GHG-~ is found to be Hermitian (a more general type of this 
transformation was discussed in ref. 14). In the second step we perform a 
rotation around the y axis in the space of o.-matrices: 

O''v=#Y; O "x a" + x/~ #~ a" - x/~ fix (3.3) 
(1 +6)  ~1"- ; o.=- (1 + 6 )  v 2  

where 

d 
6 = - (3 .4)  

C 

The 6 j still obey the same commutation relations as the Pauli matrices. 
After dropping the tildes, we can write the resulting Hamiltonian as 

1 L I  ~ A' 
Ocoag = - -  ~ /7  ?]o.~vo.;~"+ 1 q- o.~!'o.]'+ 1 + - ~  o.~o.~+ 1 

i=1 

[(1 1 q A'] 
4 (o.7 + o . ~ + , ) -  r / -  - -  (3 .5)  

q 

with 

zf '= 1 - c ,  q =  (1 +d)  i/z (3.6) 

For A ' = 0  we find the Hamiltonian of the X Y  chain in an external 
magnetic field, which has been studied in refs. 35-37. This Hamiltonian is 
known to be integrable in terms of free fermions and will be the subject of 
Section 3.2. 

The calculations above are only valid in the case of a nonvanishing 
decoagulation rate because the matrix G becomes singular if d =0 .  Since 
the case of a vanishing decoagulation rate will be essential throughout this 
paper (since only in this case are the derivation of the similarity transfor- 
mation and the finite-size scaling studies possible), we will give the corre- 
sponding Hamiltonian explicitly. It is obtained from Eq. (3.1) by putting 
d =  0. It can be written as Hco,g = Ho + Hi ,  where Ho is the Hamiltonian 
of the X X Z  chain in an external magnetic field in the z direction studied 
in ref. 38: 

L 
Ho _ --�89 Z Eoo.;'o.[+, + o.i!'o.;!'+, + A'o.~o.~+, 

i=1 

+ (1 - ,a')(o.~ + o.~+ ,) + A' - 2] (3.7) 

L 
H , = - � 8 9  ~ [a~+(1-o .~+t )+(1-o .~)o .L~]  (3.8) 

i=1 

822/78/5-6-16 
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with 

z l '=  1 - c  (3.9) 

The spectrum of the total Hamiltonian is determined by Ho alone. This fact 
can be understood in the following way: Since Ho conserves the total 
number of particles N =  �89 ~ (1 - a~ ) ,  it can be brought into block-diagonal 
form, each block corresponding to a fixed number of particles. If we 
arrange the blocks in an increasing order, it is clear that HI leads only to 
blocks above the diagonal because it decreases the total number of particles 
by one. 

Of course the eigenvectors of Ho are changed due to the presence of 
HI. For a detailed discussion see Appendix A in ref. 14. 

3.2. Spectrum of the Coagulation-Decoagulation Model 

The Hamiltonian of the coagulation-decoagulation model can be 
diagonalized in terms of free fermions if we put A '=0 ,  i.e., c =  1. This 
choice of rates corresponds to a model where the coagulation-reaction 
takes place instantaneously when two particles meet. A continuous version 
of this model has been studied in refs. 39 and 40. Imposing periodic 
boundary conditions, we can write the Hamiltonian (3.5) as 

H = - ~ , Z  .= r/a;"o';Y+ ~ + ~ o-fo';~+ ~ + o';" + o';-+, - q - (3.10) 

Using a Jordan-Wigner transformation and a Fourier transformation, we 
can write the Hamiltonian in the diagonal form 135-37'41) 

H=P+ E AqX;Xq P+ '~-e- E aqX;Zq P- ( 3 . 1 1 )  

qcvcn qodd 

where Zq and Xa are fermionic operators obeying the anticommutation 
relations 

{Z~, Xk} =6q.k, {Ztq, Z*~} =0,  {Zq, Z~} = 0  (3.12) 

The Aq a r e  fermionic excitation energies given by 

Aq = r/(r/+ r / - '  - 2 cos(q)) (3.13) 

P-+ denote the projection operators onto the sectors with charge Q =  +1, 
respectively, where Q is given by 

Q = ( - 1 )  N (3.14) 
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N counts the number of particles. By q . . . .  and qodd we denote the values 
q takes in the different Q-sectors. These values also depend on the lattice 
length: 

I ~  ( 2 k + l ) ~  k = 0 ,  1,2 ..... L - 2  L - '  - ~ '  Q =  +1 '  Leven 

L-____~I 
q . . . .  (2k+  1) ~ k = 0 ,  1,2 ..... 2 Q = + I ,  L o d d  

Z ' 

2krc 
0, + -~--, n, k = 0 ,  1,2 .... L - 2  _ - - - -~ ,  Q = - 1 ,  L even 

qo~d = 2k~ k = 0, 1, 2 ..... L - 1 
0 , _  L ' 2 ' Q = - I ,  L o d d  

(3.15) 

(3.16) 

Due to the projection operators in Eq. (3.11), all excitations are only com- 
binations q f  an even number o f fermions  in the sector Q = + 1 as well as in 
the sector Q = - 1 .  This can be understood taking into account that in 
both sectors we have a ground state with energy zero but with different 
charge. So the zero-energy state in the sector Q = - 1  has already charge 
- 1 .  Consequently, all excitations in this sector are combinations of an 
even number of fermions. The same applies to the sector Q = + 1. 

The situation is different for open boundary conditions. Here the 
Hamiltonian is again given by (3.10), but the sum only runs up to L - 1 .  
Using standard techniques, we can write the Hamiltonian in the diagonal 
form (42) 

L - - l  

~xY= y, Aka~ak t3.17) 
k = O  

where a t  and a k are fermionic operators: 

{atk, a t}=~k. , ,  {a~, a~} =0 ,  {ak, a,} = 0  (3.18) 

Here the fermionic excitation energies Ak are given by 

A o = 0  (3.19) 

A, = r / ( r /+  t / - '  - 2 cos --~-), k = l  ..... L - I  (3.20) 

The fact that one obtains an eigenvalue zero for arbitrary t/is related to a 
hidden quantum group symmetry (43) and implies that the levels of the 
spectrum are at least twofold degenerate. 

Equations (3.13) and (3.20) are just the dispersion relation of the X Y  
chain and we observe that the system is massless for t /=  1 ( d =  0). 
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3.3. The Annihi lat ion Model  

In the annihilation model the only possible reaction besides diffusion 
is as follows: 

�9 Annihilation with rate Fo~o ~ = a: 

A + A--* f2J + (~ 

For  an initially fully occupied lattice and the choice of the rates a = 2D 
some exact results have been found in refs. 32, 44, and 45. The influence of 
the annihilation rate was investigated by Monte  Carlo simulations t46J and 
for lattice models with discrete timeJ 47"48~ Furthermore,  there are renor- 
malization group calculations for higher dimensionsJ 34'49) 

From the definitions (2.6) and (2.7) we derive the Hamil tonian Harm = 
Ho + H~ with 

L 

Ho - � 8 9  " " + ' ;  = x x + i f ;  •; '+ 1 Z~ f f i f f i +  1 

i = 1  

+ ( 1 - A ' ) ( a T + a ~ + ~ ) + A ' - 2  ] 

L 

H, = - ( 2 -  2zl') Z a+a,++, 
i = 1  

(3.21) 

(3.22) 

where 

a 

A ' =  1 - -  (3.23) 
2 

The same arguments as in Section 3.1 show that the spectrum again is 
determined by Ho only (here the operator  H 1 decreases the number  of 
particles by two). Since for 

a 

c = - (3.24) 
2 

the operators H o of the coagulation model (3.7) and the annihilation model 
(3.21) are identical, Hcoag and Han . have the same spectrum in this case. 

If we put additionally A ' = 0 ,  i.e., a = 2  (corresponding to instan- 
taneous annihilation when two particles meet), the Hamiltonian of the 
annihilation model can be written in terms of free fermions. In this case the 
spectrum can be obtained from Section 3.2 by putting ~/= 1 (vanishing 
decoagulation rate) there. 
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4. T R A N S F O R M A T I O N  B E T W E E N  T W O - S T A T E  M O D E L S  

As the comparison of the Hamiltonians (3.7), (3.8)and (3.21), (3.22) 
revealed in the previous section, the coagulation and the annihilation 
models have identical spectra if the annihilation rate is chosen to be twice 
the coagulation rate. 

In this section we are going to show that both Hamiltonians are 
related by a similarity transformation, i.e., they are equivalent from an 
algebraic point of view. We will discuss the consequences this transforma- 
tion implies for the relation between the expectation values of observables 
in the two chemical models. 

Kang and Redner t4) conjectured for the first time that the coagulation 
and the annihilation models are equivalent because they observed a t-1/2 
decay of the concentration in both models. For the special case c =  1 
and a = 2 the transformation law for the concentration for certain initial 
conditions t32~ as well as for special correlation functions averaged over 
translationally invariant initial conditions t31) are known exactly. 

We point out that we relate two complete families of models because 
A' remains as a free parameter. Furthermore, we give the transformation 
law for arbitrary observables and arbitrary initial conditions [cf. Eq. (4.9)]. 

The fact that both Hamiltonians are equivalent can be seen easily: We 
define the matrices 

b = ( ; - 1 2 ) ,  b - l = ( ;  i )  (4.1) 

and their L-fold tensor product: 

B = b  | B - I =  (b - , ) |  L (4.2) 

Using the relations 

ba+b - j  =�89 + (4.3) 

bcr -b - '  = - a :  + 2 a -  - �89 + (4.4) 

ba:b-L = a~ + cr+ (4.5) 

it is straightforward to prove that 

Hr = B H , , ,  B -  i (4.6) 

Thus both Hamiltonians are equivalent. Notice that this transformation is 
nonunitary but local and independent of the sites. Therefore it can be 
applied in the case of periodic as well as of open boundary conditions. 



1442 Krebs e t  al. 

We now study how the expectation values transform under application 
of B. Let us first consider a special case of initial conditions. We introduce 
a state IPo) of the product form: 

- P l  . (1 --PL 
I P ~  ) |  " |  PL ) (4.7) 

with P o = ( p l  ..... PL). If we take 0~<pi~< 1, this is a state where site i is 
occupied with probability p;. The generalization to an arbitrary initial state 
is straightforward because every state I{fl}) of the spin basis is of the 
product form (4.7) if the values p i = f l i  are used. Therefore an arbitrary 
initial state tPo) can be expressed as a linear combination of product states 
(4.7). 

The operator B-1 acts on I Po)  according to 

B- I  IPo) = 1�89 (4.8) 

For the expectation value (X) (Po ,  t) of an observable X at time t and for 
a given initial state IPo) we find 

( X ) c o a g  (Po, t )=  (0l Xe  -u=a~' IPo) 

= (01XBe-m"~ -~ IPo) 

= (XB)~nn (�89 t) (4.9) 

This relation can be applied to an arbitrary n-point function. The operator 
of the occupation number of the ith site is given by 

n i = ( ~  01) i (4.10) 

Using the relations (0l b = (01 and nib = 2hi, we find 

(l'lil """//ik)coag (Po, t )=  ((nil "" "nik ) B)ann (�89 t) 

2 k ( n i . . . n i k ) . n ~  1 = (~Po ,  t) (4 .11)  

As a special case, we obtain for the concentration c =  ( l /L)Z~= j n,- 

Ccoag(Po, t) = 2Cann(1po, t) (4.12) 

We finally remark that if probabilities larger than 1/2 occur in the annihila- 
tion model [cf. Eq. (4.8)], the application of the transformation B leads to 
probabilities larger than 1 in the coagulation model. Therefore the range of 
the physical correspondence between both models is restricted. However, 
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the calculations of expectation values are valid for any state, since, accord- 
ing to Eq. (2.12), they do not depend on the interpretation of the state IP> 
as a probability distribution. 

5. P R O B A B I L I S T I C  A P P R O A C H  TO T H E  C O A G U L A T I O N -  
D E C O A G U L A T I O N  M O D E L  W I T H  A' = 0 

The calculation of expectation values according to Eq. (2.12) requires 
the knowledge of the full probability distribution P({/~};t). One way 
to compute e({/~};t) from a given initial state Po({/~}) would be to 
diagonalize the Hamiltonian, i.e., to find all 2 L eigenvectors. These calcula- 
tions become very cumbersome even for small lattice sizes. 

In the special case of the coagulation model with A' = 0 it was shown 
in refs. 27, 39, 40, and 50 that a subset of observables can be found for 
which the time evolution is described by a closed system of differential 
equations. Furthermore, the so-called empty interval probabilities were 
introduced, the corresponding differential equations were solved, and the 
concentration for infinite systems was computed. 

In this section we will adapt this formalism to finite systems, derive 
the differential equations for the time evolution of the empty interval 
probabilities, and present a complete set of solutions for periodic as well as 
for open boundary conditions. The solutions will be identified as one- or 
two-fermionic excitations of the corresponding quantum chain. 

5.1. Empty  Interval  Probabi l i t ies  

The empty interval probability function 12(j, n, t) is defined as the 
probability to find n consecutive sites j -  n/2 + 1 ..... j + n/2 empty at time t. 
(In the case of periodic boundary conditions, the arithmetic operations on 
the numbering of the sites are performed modulo L.) Notice that j takes 
half-integer values if n is odd. For example, 12(5/2, 3, t) is the probability 
to find sites 2, 3, and 4 empty at time t. 

Obviously the probability to have site j occupied is just 
1 -  (2 ( j - � 89  1, t). Therefore we can calculate the concentration as 

] L~/2 
~(j ,  1, t) (5.1) c( t )=  1 - L  j=l/2 

The probability f2(j, n, t) is the expectation value (O(j, n)>(t) of the 
empty interval operator 

0 
O(j,n)=(lo 00)j_,,/2+l~)...~)(10 0)j+n/2 (5.2) 
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From the Schr6dinger equat ion (2.8) and Eq. (2.10) it follows 
immediately that the time evolution of g2(j, n, t) is given by 

0 
tO -'12(j' n, t)= --(OI O(j, n)H IP ) (5.3) 

By a series of purely algebraic manipulat ions we will show that  the right- 
hand side can be expressed in terms of empty  interval probabilit ies O so 
that  we obtain a closed system of differential equations. 

The Hamil tonian  is rewritten as H =  Z i  Hi,  where Hi operates locally 
on the sites i and i +  1 and has the matrix representation 

q2 0 1 _ 

Hi= - 1  ~ q2 

1- - t l -  1 _q2 

(5.4) 

where we used the notat ion r/2= 1 + d. We can now write down the system 
of differential equations describing the time evolution of t2(j, n, t). For  
n = 2 ..... L - 1 we obtain 

0 L 
t2(j, n, t) = - ~ <01 O(j, n) H i I P )  (5.5) 

i = l  

= --(01 O(j, n) Hj_,,/2 ]P) - (01 O(j, n) Hi+,,~2 ]P) (5.6) 

= r/2(OI O ( j -  1/2, n + 1) I P )  + '72(01 O(j+ 1/2, ,7 + 1) Ie>  

- 2(,72 + 1 ) (01  O(j,n)le) 

+ ( 0 l O ( j - 1 / 2 ,  n - 1 ) l P ) + ( 0 l O ( j + l / 2 ,  n - 1 ) l P )  (5.7) 

For  i =  1 ..... j - n / 2 - 1  and i = j + n / 2 +  1 ..... L, H;  operates directly to 
the left on the bra ground state (0l.  Because we have (0l H i = 0  [cf. 
Eq. (2.13)] these terms vanish. For  i = j -  n/2 + 1 ..... j +  n/2 - 1 we have 

Therefore there are only two terms left, and Eq. (5.6) follows. Remember ing  
the fact that it is sufficient for the calculation of expectation values to 
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consider diagonal operators [cf. Eq. (2.15)], we finally arrive at Eq. (5.7). 
F o r n = l  we get 

0 
/2(j, 1, t) = q2<01 O ( j -  �89 IP )  + q2(01 O(j+ �89 [P )  

If we formally put 

-2(q2+I)(OIO(j ,  1 ) I P ) + ( O I P ) + ( O I P )  (5.9) 

o(.~ o ) =  1 (5.10) 

the case n = 1 is included in Eq. (5.7). 
Due to the last two terms in Eq. (5.9), which contain the normaliza- 

tion of probability, 

( O I P ) = I  (5.11) 

the system of differential equations is inhomogeneous. 
The way the equations were derived here is rather formal and differs 

from the derivation given in refs. 27, 39, 40, and 50. The advantage of our 
formalism is that the calculations are independent of the interpretation of 
the functions t2 as probabilities. The final equation (5.12) is valid for every 
state IP )  satisfying Eq. (5.11). This is an important  remark because it 
shows that the results for the coagulation model can be extended to the 
annihilation model with the help of the similarity transformation B (cf. 
Section 4). The transformed state B IP )  satisfies Eq. (5.11) if the state [P )  
does. 

In summary we have the following equations: 

g 
1 1 
5, 3, -~2 ( j , n , t )=  +tl2O(j - n+ l,t)+q212(j+ n +  I, t) 

-- 2(q z + I ) O(j,  n, t) 

+ s  1 1 ~,n--  1, t)+g2(j+ ~,n--  1, t), 

n =  1,..., L -  1 (5.12) 

The range of the center coordinate j depends on the boundary conditions: 

�9 For  periodic boundaries we have 

,f�89 ..... L- - �89  if n is odd (5.13) 
J = [ 1,..., L if n is even 
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�9 For open boundaries we have 

n n 
j = ~ + l  ..... L-~-I (5.14) 

In the latter case we obtain additional equations if the interval touches 
the boundaries: 

O n + t )  +(2 ( ~ ,  n -  1, 

_ ( q 2 +  1) (2 ( ; ,  n, t )  (5.15) 

,, ) ( .+1___ )(._,___ ) 
Ot L--~,n,t =tlzf2 L 2 n+l , t  +~ L 2 n--l , t  

( n )  
- (q2+ 1)s L - } , n , t  (5.16) 

Neither can all particles disappear, because there is always one left in 
the coagulation reaction, nor can particles be created from the vacuum. 
Hence for n = L (empty lattice) the time evolution decouples trivially: 

~t ~ ,L , t  =0 (5.17) 

The general case of chemical systems for which a system of differential 
equations for empty interval probabilities can be obtained is discussed in 
ref. 17. 

5.2. Solution for Periodic Boundary Conditions 

Because of translational invariance we can use a Fourier transforma- 
tion with respect to the center coordinate j :  

~(k ,n , t )=z~ O(j,n,t)ex i 
] 

k = 0 , 1  ..... L - 1  (5.18) 

For n = L there is only one independent empty interval probability. There- 
fore we put 

~(k,L,t)={~(L/2, L,O) if k = 0  
if k = l  ..... L - 1  

(5.19) 
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The fact that the system of differential equations is inhomogeneous due to 
Eq. (5.10) is reflected only in the sector corresponding to the momentum 
k = 0 :  

~(k, 0, t )=  f l  if k = 0  (5.20) 
if k = l  ..... L - 1  

Now the system of differential equations (5.12) splits up into L independent 
systems, one for each momentum k: 

~(k,n,t)=2q2cos(~-~-~)~(k,n+l,t)-2(rt2+l)~(k,n,t) 
+2cos(~---~)~(k,n-l,t) 

n = l  ..... L - I ,  k = 0  ..... L - 1  (5.21) 

From Eq. (5.17) follows in addition 

~ t3(0, L, t ) = 0  (5.22) 

The first step in solving these equations is to determine a particular solu- 
tion for the inhomogeneous problem in the k = 0 sector. It can be easily 
seen that the constant function 

I/'tOpart(n ) = 1 (5.23) 

is a solution. From now on we have only to consider the homogeneous 
systems l)(k, 0, t )=  0. The time dependence is separated by the ansatz 

~(k, n, t )=  ~tg(n) exp(-A~t)  (5.24) 

The homogeneous problem is now turned into a simple eigenvalue problem 
where the index l enumerates the different eigenvalues A~ and eigenfunc- 
tions ~ in each momentum sector: 

-A~(n)=2q2cos(~kL) ~U,(n + 1)-2(r /2+ 1 ) ~ ( n )  

+ 2 cos (~-)~Uk(n-- 1) (5.25) 
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From Eq. (5.22) we have o o - A  / ~U/(L ) = 0. Thus ~g~ can be nonzero only 
if A ~  i.e., if the solution is stationary. We find 

- -  ~] --211 

~u~ - 1 - r t  -2L (5.26) 

For k4 :0  we have from Eq. (5.19) anyway ~(k,  L, t ) = 0 .  The solution for 
A 5 0  therefore have to obey ~ ( 0 ) =  ~ k ( L ) = 0 .  These boundary condi- 
tions suggest an ansatz with plane sine waves which have to be deformed 
because of the factor q2 in Eq. (5.25). We find 

(5.27) 

with eigenvalues 

1 g(k + l) 2 cos (5.28) A k = q  2 q +  - - 2 c o s ~  

Here the index l enumerates the different eigenvalues for fixed k: 

k = 0  ..... L - l ,  l = 1  ..... L - 1  

The various solutions can now be compared to the fermionic excitations of 
the quantum chain (3.10) from Section 3.2: 

�9 The particular solution (5.23) corresponds to a completely empty 
lattice and thus to the vacuum of the quantum chain. 

�9 The stationary solution (5.26) is related to the charged ground state 
of the sector Q = - 1  of the chain. 

�9 The eigenfunctions (5.27) can be identified as representations of two- 
fermionic excitations, as the comparison of Eqs. (3.13) and (5.28) 
shows. 

The stationary solution (5.26) and the L(L-1) two-fermionic excitations 
(5.27) together with the particular solution (5.23) form a complete set of 
solutions of the differential equations (5.21) for the Fourier-transformed 
empty-interval probabilities. The general solution can always be expressed 
as a linear combination of these special solutions: 

L - - I  

~(k, n, t)=6k, O+6k,oA~176 ~ A~Tt~(n)exp(-Akt) 
I = 1  

(5.29) 
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The initial condition I2o(k, n) at t = 0  determines the coefficients A~. The 
first term 6k.o and the second term take into account the particular solution 
(5.23) and the stationary solution (5.26), which appear only in the sector 
with momentum k = 0. 

The coefficients A ~ can be easily calculated if we use the scalar product 

2 L - !  
(f[  g ) : = ~  ~ r/2'~f(n) g(n)  (5.30) 

n =  | 

sector. The eigenfunctions (5.27) obey the in each momentum 
orthogonality relation 

7t,,,)=fiz.,, (5.31) 

with respect to this scalar product. Since all solutions except the stationary 
and the particular one vanish for n = L ,  the coefficient Ao ~ is determined 
only by the initial value of f)o(0, L) according to 

Ao ~ = ~o(0,  L )  -- 1 (5.32) 

The other coefficients are computed using the relation (5.31): 

A~ ( ~ l ~ o ( k ) - 6 k , o ( l  + A ~ o = gtsta,)) (5.33) 

Using the inverse transformation 

. 2rcjk'~ 
(2(j, n, t) = ~ f](k, n, t) exp - l  ---~--) (5.34) 

k 

we obtain from Eq. (5.29) the empty interval probabilities f2(j, n, t). This 
completes the solution of the differential equations for periodic boundary 
conditions. 

5.3. Solution for Open Boundary Conditions 

Notice that, in opposition to the case of periodic boundary conditions, 
where the Fourier-transformed system has only L--1  degrees of freedom, 
the system (5.12), (5.15)-(5.17) has L ( L +  1)/2 degrees of freedom. The loss 
of translational invariance causes the system of differential equations to 
grow quadratically with lattice length L. Naturally it is more difficult to 
solve this system than the previous one for periodic boundary conditions. 

Because of Eq. (5.10) the system of equations is inhomogeneous. The 
particular solution is the same as in the case of periodic boundaries: 

~bpa~t(j, n )=  1 (5.35) 
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So we only have to deal with the homogeneous system of differential 
equations by setting t2(j, 0, t) = 0. As one can easily check, the system of 
differential equations (5.12), (5.15)-(5.17) is invariant under space reflec- 
tion P, which is described by the map 

P: (j ,n)~--~(L-j,n) (5.36) 

Therefore we can find solutions which are eigenfunctions of P as well. 
It is convenient to change the variables. Instead of the center j and 

the length n of the interval we now use the positions of its left and right 
boundary, 

n n 
x = j - ~ ,  y = j + ~  (5.37) 

where x and y take the values 0 ~< x ~< y ~< L. In this notation the space 
reflection becomes P: (x, y)~--~ ( L - y ,  L - x ) .  As in the case of periodic 
boundary conditions the ansatz 

O(x, y, t)= q~A(x, y)e  -A' (5.38) 

is used to separate the time dependence and we are left with an eigenvalue 
problem: 

�9 F o r O < x < y < L  

--Aq~A(x, y)=rlz(qka(X - 1, y)+~A(X, y+ 1)) 

+(~A(X+I,y)+(~A(x,y--1)--2(q2+I)OA(x,y)  (5.39) 

�9 For the boundary terms x = 0 or y = L 

-a~ba(0,  y) = r/-'~b,(0, y +  I) + ~bA(O, y - -  i ) - -  (r/z+ I) ~b ~(0, y) (5.40) 

-A~A(x ,L)=q2(L~(x - I ,L )+q~A(x+I ,L) - (nz+I) (L~(x ,L)  (5.41) 

--A~A(0, L)=0 (5.42) 

For easy reference we illustrate the organization of the complete system for 
L =  6 sites in Fig. 1. Here the L(L + 1)/2 boxes represent the degrees of 
freedom ~b~(x, y). The number in each box denotes the strength of the 
diagonal contribution in the differential equations, where g = - ( 2  + d ) =  
- ( 1  + r/2), while the arrows denote the flow of probability to the neighbors 
with respect to the couplings 

-% J.: 1 + d=rl z 

'--, T: 1 
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Fig. 1. Structure of the system of differential equations for L = 6 sites. The figure is explained 
in the text. 

The zeros on the hypotenuse x = y  represent the contributions from the 
inhomogeneous part of the system. Since we consider only the homo- 
geneous equation, we will drop these terms in the following. 

Before calculating the solutions of Eqs. (5.39)-(5.42) we give a short 
description of how to proceed. Looking at Fig. 1, we find that the boxes on 
the short sides of the triangle form a closed (2L-1) -d imens iona l  sub- 
system of differential equations. As a consequence we expect two kinds of 
solutions: 

The first kind is obtained by solving the subsystem separately. Since 
each solution imposes inhomogeneous Dirichlet boundary condi- 
tions, it can be extended uniquely to the interior of the triangle. 
This procedure yields a set of 2 L -  1 solutions of Eqs. (5.39)-(5.42) 
forming a complete set of eigenfunctions for the short sides of the 
triangle. 

The second kind of solution is now calculated using the complete- 
ness of the first kind of solution. They are forced to vanish on the 
boundary and therefore to obey homogeneous Dirichlet boundary 
conditions. 
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Let us now study the solution of Eqs. (5.39)-(5.42) in more detail. For 
the moment we choose r/= 1 (i.e., decoagulation rate d =0 ) .  Then the 
differential equations acting on the short sides of the triangle are 

D~ ~ A(x, L )= -A(b A(x, L) 
(5.43) 

D~A(0, y)= --A~A(0, y) 

where x, y = 1 ..... L -  1. Here D~ and D>. are discrete derivative operators 
in the x and y directions, respectively. For example, D~ is given by 

D~(~(x, y) = O(x + 1, y) + O(x -- 1, y) -- 2~b(x, y) 

The probability for an empty lattice qtA(0, L) decouples completely 
and remains constant in time. Thus ~bA(0, L) takes nonzero values only if 
A =0.  In this case the second derivative of ~b vanishes and we find the 
stationary solution which is a linear function of x and y with ~stat(X, X) = 0. 
Thus (ks~a~(x,y)~y--x. For A4:0  the condition qtA(0, L ) = 0  gives an 
additional constraint which determines the solution of Eq. (5.43) to be 
simple oscillations: 

~(x, L) ~ sin rtk,.x xkvy  L ' ~b(0, y ) ~ s i n  L 

(5.44) 

Ak=2  (1 - - cos  ~ - )  

where k =  1 ..... L - 1 .  Since the eigenfunctions are determined by two 
independent equations, they are twofold degenerate if A :# 0. However, we 
can choose the solutions to be eigenfunctions of P. It will be convenient to 
introduce the notation P~bff = +_(-1 )k ~bff. So far we have determined the 
required 2 L -  1 solutions on the short sides of the triangle, which still have 
to be extended to the interior. Here the differential equations act according 

2 2 to (Dx+D;,) (~=-Aq~, where the operator on the left side is just the 
discretized Laplacian. 

The remaining ( L -  1)(L--2)/2 solutions of the interior of the triangle 
are plane waves vanishing on the boundary of the triangle. Collecting all 
the solutions and comparing them with the excitations of the X Y  chain 
Eq. (3.13), we find the following structure: 

�9 The particular solution 

~bp~rt(x, y ) =  1 (5.45) 

corresponds to the vacuum of the quantum chain. 
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�9 The stationary solution 

~ b ~ t a t ( x  ' y )  = y - -  x L (5.46) 

is related to the fermion with vanishing energy. 

�9 The eigenfunctions 

y ) = 1 ( sin nk . nk "~ ~V (x, ~/L  \ -~- x - s m  -~- y j  (5.47) 

- s i n - - x -  1 - - -  sin ~b; (x, y ) = ~  L -L- y (5.48) 

represent the one-fermion excitations (k = 1 ..... L -  1). 

�9 The second kind of eigenfunctions 

2 (  nk . nl nl nk ) 
Cbkl(x, y ) = ~  sin---ff xsm--~ y--sin--~xsin--ff  y (5.49) 

correspond to the two-fermion excitations (k, l =  1 ..... L - 1; k < l). 

This is the complete set of L(L + 1 )/2 solutions. For r / r  ! we obtain 
deformations of them. In order to avoid too much detail, we only present 
our results: 

�9 The stationary solution: 

1 - q2(x-y) 
~bstat(x' Y) 1 - r/-2L (5.50) 

with eigenvalue A = 0 and parity P = +1. 

�9 One-fermionic excitations (k = 1 ..... L -  1 ): 

1 r/"-Y [ nk ~ ") nk ] 
q~(x,y)=~l+_q---  ~ (qv+_qt'--")sin-ffx--(q"+_tl L s in -~-y  (5.51) 

with eigenvalue Ak = q[q + q -J - -2  cos(nk/L)] and parity P =  4 - ( -1 )  k. 

�9 Two-fermionic excitations (k, l =  I ..... L -  I; k </ ) :  

nkx nly n l x .  nky'~ 
qSkt(X ' y ) = 2 q . , . _ y  sin__~__sin_.~__sin_Esln_.~___ ) (5.52) 

with eigenvalue A~t = r/[2r/+ 21/- ~ - 2 cos(nk/L) - 2 cos(hilL)] and parity 
p = ( - 1 )  k+t+l 

822/78/5-6-17 



1454 Krebs et  al.  

It is easy to check that these solutions reduce to Eqs. (5.46)-(5.49) in the 
limit r / ~  1. 

Let us now study the orthogonality relations of the different types of 
solutions. The functions ~b~, k :~ 0, form a complete system of eigenfunc- 
tions on the short sides of the triangle except the point (0, L). Therefore we 
define a scalar product (-[')boundary which takes only these points into 
account: 

L--I  L--I  

( f [  g)boundary = ~ r/2tL--xf( x, L) g(x, L) + ~. q2Yf(0, y) g(0, y) (5.53) 
x = l  y = l  

The solutions (5.50)-(5.52) are normalized so that 

(~bT, I = 6k~cS~t~ (5.54) 

where k, l =  1 ..... L - 1  and •, 13 = _. For the functions q~kt we define a 
scalar product on the interior of the triangle: 

L--I  L--I  

( f [  g)bu,k = ~ ~ q-2tx-Yf(x, y) g(x, y) (5.55) 
x =  1 y = x +  1 

The functions ~kJ then obey the relation 

(~kt[ ~k'r)bulk = 6kk'Oa' (5.56) 

These relations are independent of the value of ~/. 
Every solution can be expanded in terms of the eigenfunctions 

(5.50)-(5.52): 

L--I  
s y, t) = l + f.O0~stat(X , y) + ~ ~ w~q~(x, y) e - A k t  

k = l  r  • 

L - - 2  L - - I  

+ Z ~ 09kt~kl(X, y)e -tak+a')' (5.57) 
k = l  I = k + l  

Here the constant 1-function is just the particular solution (5.35) and Ak is 
defined in Eq. (3.13). The scalar products (5.53) and (5.55) allow the 
coefficients O~o, co~, and ogk~ to be computed if the initial values 12o(X , y) 
are known. We obtain 

~0 = Oo(0, L) - 1 (5.58) 

o9~ = (~bff I O o -  1 - ~O0~b~tat)bo,,da~y (5.59) 
L--I  

O ) k / = ( ~ k / [ f f 2 0 - - l - - ( D O ~ s t a t ) b u l k - -  Z Z CO~, ' (~k , [~ ' )bu ,k  (5 .60 )  
k ' = l  ~=-b 

We will apply this procedure for a special choice of the initial conditions 
in the next section. 
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6. F INITE-SIZE SCALING 

In this section we study the finite-size scaling behavior of the concen- 
tration for the coagulation model with periodic and open boundary condi- 
tions and for the annihilation model for periodic boundary conditions (the 
latter case illustrates the consequences of the similarity transformation). 
The finite-size scaling limit is obtained by taking the limit L ~ ~ ,  t ~ 
while the scaling variable z = 4t/L 2 is kept fixed. As explained in the intro- 
duction, the expansion of the concentration in the scaling limit, Eq. (1.2), 
reads 

c(z, L)=L"[Fo(z) + L-YF(z) + ...] (6.1) 

where Fo is the scaling function and x the scaling exponent. The leading 
correction term is denoted by L-YF, where y is the correction exponent 
and F the correction function. 

Since the finite-size scaling hypothesis is only valid for systems corre- 
sponding to massless quantum chains, we have to restrict ourselves to the 
case r/= 1, where the decoagulation rate d vanishes. In general, only models 
without backreactions correspond to massless quantum chains. 

6,1. The Coagula t ion  Mode l  w i t h  
Periodic Boundary  Condi t ions 

Before calculating the finite-size scaling expansion for the concentra- 
tion, an exact expression for the particle concentration has to be found for 
a special choice of the initial condition. According to Eqs. (5.1) and (5.29), 
we have 

1 L -  1/2 

c ( t ' L ) = z ~ "  '= /2 [ 1 - / 2 ( j ,  1, t)] 

= 1 - t2 (0 ,  1, t) 

L - - I  

= -Ao  ~ 7ts~ - Z A~ 7t~ e x p ( - A ~  
k = l  

(6.2) 

As initial condition we choose a state where each site is occupied with 
probability p: 

~(0, n, O) : g2(j, n, O) = (1 - p ) "  (6.3) 
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The coefficients A ~ can be calculated with the help of Eqs. (5.32) and 
(5.33). For the concentration we find 

(1-- q -2 ) r l  -- (1-- p)L'] 
c(t, L) = 1 - r1-21. 

1 L-I [ 1 + ( - - 1 )  k+l qL(1--p)1. 
L ff"~= L [1 + r/2(1 - p)2]/2r/(1 - p) - cos(nk/L) 

_ l+( -_ l ) k+ '_q1 . (1 -p )  1-] 
(q2 -t- 1 )/2q - cos(gk/L) ] 

x sin2 (--~) e x p ( -  A~ 

where the A ~ are calculated from Eq. (5.28): 

(6.4) 

E A~ 2(q + r / - ' ) - 4  cos ~ -  (6.5) 

This expression for the concentration is exact for all lattice sizes L. In the 
limit q --, 1 we derive from Eq. (6.4) 

c(z, L )=  
1 - ( I  _p)L 

L 

I '[E 1 
Lk=l 

1 "~- ( - - l )  k+l  (1 _ p ) L  

+ (1 - p)2]/2(1 - p)--  cos(nk/L) 

1 + ( - 1 )  k+~ (1 - -p)L]  
/ 

�9 2 {~k'~ xsln ~ - ~ ) e x p [ - z L 2 ( 1 - c o s ~ k L )  ] (6.6) 

We now perform the scaling limit in Eq. (6.6). For this purpose we write 
Lc(z, L) as a power series in 1/L with coefficients depending only on the 
scaling variable z. The coefficients can be identified as Jacobi theta func- 
tions and their derivatives: 

, Z O 2  Lc(z, L )=O3 (O, i~) +~ [-g-~? 03 

+(p-2)____ 2 O 03 0,-~-- + O  
2p 2 Oz (6.7) 
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where 03(/,/, r) is defined by the series 

03(u, ~)= ~ ei'~12e2ia' (6.8) 
I =  - - o o  

Comparing this result with Eq. (6.1), we find the scaling exponent and the 
correction exponent to be x = - 1  and y = 2 .  Observe that the initial 
probability p (to find a particle at a site at time t = 0) enters only in the 
corrections. So the scaling function for this model is independent of the 
initial conditions as far as an uncorrelated initial state is concerned. It 
reflects the phenomenon of self-organization: with increasing time and 
lattice length, the influence of the initial conditions vanishes. 

At this point, it is interesting to mention that it is possible as well to 
obtain the scaling function by using the continuum limit of the lattice 
model. ~4~ These calculations are presented in the appendix. 

Before closing this section, we relate the concentration in the scaling 
limit, taking additionally small z, to the long-time behavior of the concen- 
tration in the thermodynamic limit. For this purpose, we apply the Poisson 
resummation formula to the scaling function 03(0, ircz/2): 

+ 2 , ~ 1  exp - (6,9) 

With the help of this expression, we can now take the limit for small z in 
Eq. (6.7): 

1 1 ((p-2)-' c(z,L)=z(2)t/211-4--~___ p2 ~ ) + ' " ]  (6.10) 

Inserting the definition of z yields 

The leading term was already obtained in refs. 29 and 40. 
This relationship illustrates the fact already mentioned in ref. 14: the 

scaling exponent x =  -1  is twice the exponent c~ of t in the long-time 
behavior of the concentration in the thermodynamic limit, where c(t) ~- t ~. 
This is very useful for the determination of the "critical" exponent a in non- 
integrable models. In these cases, it is possible to examine finite systems 
(where the Hamiltonian can be diagonalized numerically) and to determine 
the finite-size scaling exponent x and therewith a by extrapolation. 

The scaling relation can be understood from a more general point of 
view by looking at the scaling behavior of the concentration. In the 
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thermodynamic limit L ~ c~ with fixed t, z becomes small, so that the 
scaling function and the corrections can be expanded in powers of 1/z [cf. 
Eq. (6.9)]: 

c(z, L )= LXFo(z) + . . . .  LX ( 1 G  + . . . )+ ... 

L2,+x 
= ( G +  . . . ) +  -.. (6 .12 )  

4,,t ~ 

Since this has to be independent of L, it follows that x = -x/2, so that 

1 1 
c(t) - t_ x/2 - -  tl/2 (6.13) 

This proves the relation ~ = x/2. 

6.2. The Coagulation Model with Open Boundary Conditions 

The concentration is again calculated by means of Eq. (5.1). The 
expression for t2(j, 1, t) needed for this calculation is obtained from the 
general expressions (5.57)-(5.60), using the same uncorrelated initial state 
as for periodic boundary conditions where the occupation probability p is 
equal for all sites: 

(2o(X, y) = ( 1 - p)"-Y (6.14) 

Straightforward but rather laborious calculations show that the concentra- 
tion is given by 

c(t, L ) - -  1 - q - :  [ l _ ( l _ p ) L ]  
1 - q-2L 

4 ( 1 - q  -2) ~ J  
-t L Z - ~ - z - 2 ) ~ =  ' [1--  (--1)k (1-- p)L ~/L] 

sinZ(rtk/L) ( Z )  x[ - r /L+q-L--2( - -1)k]  Ak ~__~_ 1 exp(_Akt  ) 

+L-~qk=, ,=k+, cos(~k/L)-cos(~l/L) +At .4k ~l, 
k + / o d d  

( 1  _ 1 ~ ( 1  1 ~ _  2 2 ] 
+2(--1)kqL(1--P)L\A,  .TlkJ\Ai .TIJ A,.71t+Ai.71k 

sin2(gk/L ) sinZ(rtl/L ) 
x cos(nk/L) - cos(nI/L) exp[ - (Ak + AI) t] (6.15) 
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where Ak is defined by 

A k = q [ ( 1 - p ) q + ( 1 - p ) - ' q - ' - 2 c o s ~ k L ]  

In the case r /=  1 the concentrat ion takes the form 

c(t, z;)= 

(6.16) 

1 - ( l - p )  L 

L 

4 L - - I  L - - I  

Z 
k = O  1:1 

k+ todd 

sin'-(rck/L ) sin2(rff/L ) 
•  

cos ( ~k/L ) - cos (~l/L) 

cos(zk/L)---cos(rd/L) +At .71k ~, 

1 1 2 

exp[  - (Ak + At) t]  (6.17) 

Performing now the finite-size scaling limit in Eq. (6.17), we find 

16 ~ k2 + l 2 F -] 
/=1 -~-(k + l  2) (k 2 _ 12)2 exp E - J 

k + l o d d  

+L-~ k=0 /=1 ( k 2 - 1 z )  z 
k + / o d d  

8 (1 + 6(1 - p)/p2)(k4 + l 4) + k2l 2. exp - ~ (k + l ~) 
3 ( k 2 - / 2 )  2 

and therefore we obtain the exponents x = - 1 and y = 2. The functions F0 
and F can be written in a simpler form by rewriting the sums in Eq. (6.18) 
in terms of ~ = (k + l -  1 )/2 and v = (k - l -  1)/2: 

1 
Fo(z) = 1 ---~.go(z) g,(z) (6.19) 

7z z 1 
F(z) = --]-~ g , (z)  g2(z)--(~ go{z) g3(z)- {go(z) g2(z)- [g~(z)]  2 } 

1--p 1 1 [g~(z)]Z } (6.20) - - ( 1  + 6 - ~ ) { g  g o ( z ) g 2 ( z ) + ~  
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where the functions g~(z) are defined by 

go(z) = ,  = - ~  n2(F + 1/2) 2 exp - ~ -  /.t + ~ (6.21) 

0 i 
g , (z )  = Oz--- 7 go(z) (i = 1, 2, 3) (6.22) 

In particular we have the identity 

gl(z)=O,_ (o, i2 ---{z) (6.23) 

where 02(u, z) is the Jacobi theta function defined by 

'72_, 

02(u, r) = ~ ei,~(t+ l/2)2e2iU(/+ 1/21 (6.24) 
/ = - - , ~  

Now we are able to compare the finite-size scaling behavior for open and 
periodic boundary  conditions. In both cases we find the scaling exponent 
x = - 1  and the correction exponent y = 2. Thus the critical exponents are 
not influenced by the boundary  conditions. The scaling function and the 
correction function, on the other hand, are different, as can be seen in Figs. 
2 and 3. However, we find that in both cases the scaling functions and the 
correction functions are related to Jacobi theta functions. As in the case of 

N 

J 

Fig. 2. 

P ' I ' I 

\ 

I I 

F r e e  b o u n d o r i e s  

P e r i o d i c  b o u n d o r i e s  

= I A I i I ~ I i 

0.2 0.4 0.6 0.8 .0 

Z 

Scaling functions for open and periodic boundary conditions. 
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I I I I 

- 1  
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LL  

-~-3 / - P e r i o d i c  b o u n d o r i e s  

- 5  I J I ~ I ~ r J I 
O .  0 . 2  0 . 4  0 . 6  0 . 8  . 0  

z 

Fig. 3. Correction functions for open and periodic boundary conditions for initia/ occupa- 
tion probability p = 1. 

periodic boundary conditions, we observe that the scaling function (6.19) 
is independent of the initial probability p, whereas the correction function 
(6.20) is not. 

6.3. F in i te -S ize  Scal ing of  the  Ann ih i la t ion  M o d e l  

In this section we will discuss the finite-size scaling behavior of the 
concentration of the annihilation model. The expression for the concentra- 
tion simply follows from the one for the coagulation model using the 
similarity transformation described in Section 4. We consider only the case 
of periodic boundary conditions to illustrate the correspondence between 
the coagulation and the annihilation model. 

We choose the rates in such a way that the similarity transformation 
can be applied: 

diffusion rate D -- 1 
(6.25) 

annihilation rate a = 2 

As initial condition we use a homogeneous initial occupation probability p. 
Then the relation between the concentration in the coagulation model and 
the annihilation model (4.12) reduces to 

ca..(p, t ) =  l ~ C c o a g ( 2 p ,  t) (6.26) 
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From the expression (6.6) for the concentration in the c9agulation model 
we easily get 

1 - ( 1 - 2 p )  t- 
c,,,( t ) - 2L 

L '  I 1--(--1)k (1--2P) L 
1 [1 + (1 2p)-']/2(1 -2p)-cos(rck/L) 2L~= 1 

1 - ( - 1 )  k (1--2p) t'] 
- j 

~k 
x sin2 (-~-) exp [ - 4 t  (1 - cos ~ - ) ]  (6.27) 

If 0 < p <  1, the term ( 1 - 2 p )  L can by neglected in the finite-size scaling 
limit where L ~ ~ ,  whereas for an initially fully occupied lattice (p = 1 ) it 
has to be taken into account. The concentration then takes the form 

1 - ( - 1 )  t- 2 t - - l l - - ( - - 1 ) k + L  [ ( - '~ ) ]  
c(t) 2L + L  k~l= 2 exp --4t 1--COS (6.28) 

For an even number of sites this result was first found by Lushnikov. t44) 
The reason for the special behavior of the concentration in the case p = 1 
is the conservation of the charge Q = ( - 1 )N. Accordingly, the Hamiltonian 
splits up into two sectors describing the time evolution of states with an 
even or odd number of particles, respectively. The momenta q appearing in 
these sectors can be taken from the diagonalization in terms of free 
fermions. They are given by Eq. (3.16). For p =  1 we have Q =  ( - 1 )  L. As 
can be seen, the factor 1 -  ( - 1 )  k§ in Eq. (6.28) always selects the right 
values of the momenta q. 

We now investigate the finite-size scaling behavior, again by taking the 
limit L ~ ~ ,  t ~ ov with z = 4t/L 2 fixed. For 0 ~< p < 1 the calculations can 
be performed in complete analogy to those for the coagulation model. The 
finite-size scaling expansion for the concentration reads 

, 
Lc(z, L) ='~ 03 

1 t F z 0 2  (0, i2 z ) ( 1 - P ) 2 0 0 3 ( 0 , ~ )  
+F LgL-jo3 - -  + 

+ O (L1--~) (6.29) 
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As mentioned above, the case p = 1 needs special treatment. Here we have 
to discuss the finite-size scaling limit for L even and L odd separately. 

�9 L even: In this case the concentration takes the form 

c ( t , L ) =  ,~l= exp - 4 t  1 - c o s  rt (6.30) 

The calculation of the finite-size scaling limit yields 

Lc(z, L) = 02(0, 2ircz) + L2 3! Oz 2 02(0, 2ircz) + 0 (6.31) 

where 02(u, r) is again the Jacobi theta function defined in Eq. (6.24). Up 
to the correction term this result was already obtained by Alcaraz et aL (14J 

�9 L odd: Here we have 

c ( t ,L )=- - s  ~ exp - 4 t  1 - c o s  (6.32) 
k = l  

and the finite-size scaling limit yields 

Lc(z, L) = 03(0, 2i~z) + L2 3! Oz'- 03(0, 2rczi) + 0 (6.33) 

Independently of the initial probability p we have the scaling exponent 
x = - 1 and the correction exponent y = 2 similar to the coagulation model. 
This is not surprising, because these models are equivalent. The scaling 
function is again found to be independent of the initial probability ~ except 
for p =  1. 

7. C O N C L U S I O N S  

In this paper, we investigated two chemical models, the coagula- 
tion-decoagulation model and the annihilation model, both defined on a 
one-dimensional lattice. Mapping the master equation onto a Euclidean 
Schr6dinger equation, it is possible to give a Hamilton formulation for 
nonequilibrium chemical systems. This formulation is essential to prove the 
complete equivalence of the Hamiltonians of both systems. The second 
subject of this paper was to investigate the applicability of a finite-size 
scaling theory for these systems in nonequilibrium. 

Now we discuss the results in detail: 
We were able to prove the equivalence of the two Hamiltonians. A suf- 

ficient condition for the existence of a similarity transformation mapping 
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one model onto the other is that the annihilation rate equals twice the 
coagulation rate. The consequences of this transformation, which is valid 
for periodic as well as for open boundary conditions, are various: Once 
having solved one model, one can easily find expectation values of the 
other model by application of the transformation. In particular we found 
a simple rule for all n-point functions [cf. Eq. (4.11)]. 

The study of the Hamiltonians revealed furthermore that for a special 
choice of the rates, both Hamiltonians are integrable in terms of free 
fermions whose energy levels have been calculated explicitly. 

The key to an exact expression for the concentration in the coagula- 
tion model lies in having the empty interval probabilities g2(j', n, t). Their 
time evolution is described by a system of coupled differential equations. 
For periodic boundary conditions a Fourier transformation decouples this 
system into L independent systems growing linearly with the lattice size L. 
This is no longer possible for open boundary conditions because of the 
lack of translational invariance. In this case, one obtains one system of 
L(L+ 1)/2 equations, i.e., a system that grows quadratically with lattice 
length L. Nevertheless a solution is possible and was derived explicitly. We 
computed the concentration for initial states where all sites are occupied 
with equal probability p. 

The similarity transformation was applied to calculate the corre- 
sponding expression for the concentration in the annihilation model in the 
case of periodic boundary conditions. 

It is very interesting that the energies determining the time evolution 
of the concentration can be identified as one- and two-fermionic excitations 
of the corresponding Hamiltonian. The question of whether and how a link 
between the Hamiitonian and the relevant energies for the concentration 
can be established still has to be answered. 

A second point of major interest was to examine the applicability of 
a finite-size scaling theory for massless reaction-diffusion models. Starting 
from the exact expression for the concentration, we have shown that for the 
coagulation model with periodic and open boundary conditions and the 
annihilation model the concentration in the finite-size scaling limit can be 
written as Lc(z, L)=Fo(z)+ L-2F(z), where Fo(z) and F(z) are functions 
depending only on the scaling variable z = 4t/L 2 and can be expressed in 
terms of Jacobi theta functions. The scaling exponent and the correction 
exponent are the same for both types of boundary conditions and the two 
models investigated here. 

Since we were interested in the properties of the scaling function, we 
investigated its dependence on the initial conditions and the boundary 
conditions. 
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Concerning the dependence of the scaling functions on homogeneous 
uncorrelated initial conditions, we proved for the coagulation model and 
the annihilation model that the scaling functions are independent of the 
initial occupation probability. An exception is the case of an initially com- 
pletely occupied lattice in the annihilation model, where we get different 
scaling functions for even and odd lattices. The reason is the Z2 symmetry. 
Because the annihilation reaction reduces the number of particles by two, 
even and odd lattices decouple completely. 

Another point of interest is the dependence of the scaling behavior on 
the boundary conditions. We demonstrated that the exponents in the case 
of open boundary conditions are still the same as in the case of periodic 
boundary conditions; the scaling functions, however, are different for 
periodic and for open boundary conditions. From this we conclude that in 
general, scaling functions in finite-size scaling studies of reaction-diffusion 
models depend on the geometry of the system. 

Furthermore, we have shown that the same scaling function is 
obtained from the lattice and the continuous formulation of the coagula- 
tion model. Therefore the question arises whether it is at all necessary to 
study lattice models. In the present article, we only treated models where 
analytical calculations can be performed. Finite-size scaling allows for non- 
integrable models as well to extrapolate from finite to infinite systems. 
A numerical diagonalization of the Hamiltonian that can only be done on 
discrete lattices provides the input values for these extrapolations. Monte 
Carlo simulations as well can only be made on lattices. This will be the 
subject of our subsequent article, where several open questions will be 
investigated. Monte Carlo simulations will be used to study weakly 
correlated initial conditions as well as the dependence of the scaling 
behavior on the tuning of the rates. Here the cases will be studied where 
analytical methods cannot be applied easily. Furthermore, the question of 
whether extrapolations from small lattices can be used to determine scaling 
exponents and functions will be discussed. 

A lot of work has still to be done in this field. The present article 
shows that the formulation of universality classes in nonequilibrium ther- 
modynamics is not the same as in equilibrium statistical mechanics. The 
annihilation and coagulation models are equivalent although the annihila- 
tion model is Z2-symmetric and the coagulation model is not. A further 
interesting question arises upon looking at the scaling functions and the 
correction functions: Are they always related to Jacobi theta functions? 
The solutions of these problems will help us to gain deeper insight into the 
fascinating physics of the chemical models in nonequilibrium. 
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APPENDIX.  DERIVATION OF THE SCALING FUNCTION 
IN THE C O N T I N U U M  LIMIT 

In this appendix, we present the continuum limit of the differential 
equations (5.12) for periodic boundary conditions, treating the coagulation- 
decoagulation model with diffusion rate = coagulation rate and decoagula- 
tion rate = 0 (i.e., r/= 1). The continuum limit is obtained by replacing the 
discrete variable n, which denotes the length of an empty interval in Sec- 
tion 5, by a continuous variable x ~ [0, L-I. Because of periodic boundary 
conditions, the model is defined on a ring of circumference L. We define a 
new function E(x, t) describing the probability that a chosen interval of 
length x is empty at time t. Since we are only interested in observables that 
are averaged over the whole system, we define E(x, t) independently of the 
center point. So E(x, t) corresponds to the continuum limit of ~(0, n, t) 
Ethe Fourier transformation of the I2(j, n, t) with zero momentum as 
defined in Section 5-1. Following the derivation given in ref. 40, we obtain 
the differential equation for E(x, t): 

dE(x, t) O2E(x, t) 
2 ~ (A.1) 

Ot Ox z 

This is the well-known heat equation. Before solving the differential 
equation, we first change the variable x to y = x / L  so that y ~  [0, 1]. 
Denoting E(x, t )= F.(y, t) we obtain the differential equation 

O~(y, t) 2 a2~Z(y, t) 
(A.2) at = -~  Oy 2 

with the boundary conditions 

E(0, t )=  l, E(1, t ) =  L'(1, 0) (A.3) 

The concentration can be calculated as a derivative of L'(y, t) 

1 ~E(y, t) y=0 (A.4) c(t) - L Oy 

We now briefly present the solution of Eq. (A.2). As initial condition we 
choose 

E(y, 0) = exp( - c o L y  ) (A.5) 

This probability distribution corresponds to an uncorrelated initial state 
with an initial concentration Co. A particular solution (steady state) satis- 
fying the boundary conditions (A.3) is E s ( y ) = l - [ l - e x p ( - c o L ) ] y .  
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Solving the homogeneous problem, we observe that E(y, t) can be 
expanded in terms of the eigenfunctions Ok(Y) of the eigenvalue problem: 

- 2k Ok(Y) = 22 a2~k(Y) (A.6) 
c~y 2 

with 0k(0)= 0k(1)= 0. Then E(y, t) can be expressed in terms of the eigen- 
functions as 

E(y, t)=~,, BkOk(y ) e -;'kt (A.7) 
k 

The solution of this problem is easily determined to be 

2nEk 2 
Ok(Y) = sin(nky), 2 k -  L2 (k = 1, 2,...) (A.8) 

The complete solution of the differential equation (A.2) is now given by 

E'(y, t) = ~:s(Y) + ~. Bk x/~ sin(nky) e -2~2k2'/L2 (A.9) 
k = l  

In this expression the coefficients B k can be computed by using the 
orthogonality relation 2 So sin(nky) sin(n/y) dy = <Sk.t: 

Bk = ~ [E(y, 0) -- Es(Y)] x/~ sin(rtky) dy (A.10) 

fexp( - Co L) cos(nk)_-- I.] (A. 11 ) 
=x/ '2  k nk(1 +(nk/coL) 2) 

Now we are able to derive the concentration using Eq. (A.4) 

c(t, L ) -  
1 - e x p ( - c o L )  

This expression is exact for all lattice sizes L. If we consider the finite-size 
scaling limit L ---) <~, t --+ oo with z = 4t/L 2 fixed, the above expression for 
the concentration becomes 

"2 o~ [1-ex_p(-coL)COs(uk!~ 2t~2k2"~ 
i+ j exp ( j (A.12) 

L 
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1 z?2) .  / Z+ZLexp( 
2 o~ z?)+  , 13, 

2 ]+~co2O---~0s 0 , - -  + . . ,  (A.14) 

From the expansion of this expression for small z we can calculate the 
long-time behavior in the thermodynamic limit: 

c(t) 1 ( l ) (2~t),/2 I -  4-~c~ + ... (A.15) 

Comparing Eqs. (A.14) and (A.15) with the corresponding expressions 
(6.7) and (6.11) for the lattice model, we observe that the leading terms are 
equal, but the corrections are different. In order to understand this, we take 
a closer look at the way the continuum limit of the lattice model has to be 
taken. Here we denote by N the number of sites, to distinguish it from the 
length L of the continuous model. If a is the lattice constant, i.e., the dis- 
tance between two sites, taking the continuum limit means taking N ~ oo 
and a ~ 0 while keeping the length L = Na, the macroscopic diffusion con- 
stant D = _z,-~o and the initial concentration Co = p/a constant. Therefore t /  I 01 

the transition from the lattice to the continuum is performed by replacing 

c COo L Leo ~o D Dc~ 
c ~-=a p ' N--*-=--,a p Fol- -*a2-  p2 (A.16) 

and then taking the limit p ~ 0. It is clear that the value of the scaling 
variable z, which is z=4F~~  2 on the lattice and z = 4 D t / L  2 in the 
continuum, does not vary when p goes to zero. 

If we apply the above procedure to Eqs. (6.7) and (6.11) for the lattice 
model, we obtain exactly Eqs. (A.14) and (A.15) for the continuous model. 
For open boundary conditions, it should also be possible to derive the 
scaling function from the continuous model. The resulting equations are 
much more complicated because of the lack of translation invariance. 
Instead of the simple heat equation, one obtains a two-dimensional system 
of differential equations corresponding to the one treated in Section 5. 

To sum up, we have shown that it is possible to turn to the continuum 
limit of the coagulation model to study the scaling behavior. This should 
be possible for all models with reactions that can be described in the 
language of empty interval probabilities where the calculation of the 
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continuum limit is straightforward. The physics of the continuum model is 
the same as for the discrete model, but the differential equations are often 
much easier to solve. 

A C K N O W L E D G M E N T S  

We thank Prof. V. Rittenberg for getting us into this problem and for 
enlightening discussions. We are grateful to S. Dahmen, Dr. F. Essler, 
T. Heinzel, and Dr. G. Schfitz for critically reading the manuscript and for 
helpful comments. 

REFERENCES 

1. M. v. Smoluchowski, Phys. Z. 17:557 (1916). 
2. R. B. Stinchcombe, M. D. Grynberg, and M. Barma, Phys. Rev. E 47:4018 (1993). 
3. M. Barma, M. D. Grynberg, and R. B. Stinchcombe, Phys. Reo. Left. 70:1033 (1993). 
4. K. Kang and S. Redner, Phys. Rev. A 30:2833 (1984). 
5. K. Kang and S. Redner, Phys. Rev. Lett. 52:955 (1984). 
6. B. Chopard, M. Droz, T. Karapiperis, and Z. Rficz, Phys. Rev. E 47:R40 (1993). 
7. D. ben-Avraham and J. K6hler, J. Stat. Phys. 65:839 (1991). 
8. P. G. de Gennes, J. Chem. Phys. 76:3316 (1982). 
9. R. Kroon, H. Fleurent, and R. Sprik, Phys. Rev. E 47:2462 (1993). 

10. R. Kopelman, S. J. Parus, and J. Prasad, Chem. Phys. 128:209 (1988). 
11. V. Kuzovkov and E. Kotomin, Rep. Prog. Phys. 51:1479 (1988). 
12. L. P. Kadanoff and J. Swift, Phys. Rev. 165:165 (1968). 
13. P. Grassberger and M. Scheunert, Fortschr. Phys. 28:547 (1980). 
14. F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, Ann. Phys. 230:250 (1994). 
15. M. J. de Oliveira, T. Tom~, and R. Dickman, Phys. Rev. A 46:6294 (1992). 
16. S. Sandow and G. Schiitz, Europhys. Lett. 26:7 (1994). 
17. I. Peschel, V. Rittenberg, and U. Schultze, Nucl. Phys. B 430:633 (1994). 
18. F. C. Alcaraz and V. Rittenberg, Phys. Lett. B 314:377 (1993). 
19. L.-H. Gwa and H. Spohn, Phys. Rev. Lett. 68:725 (1992). 
20. L.-H. Gwa and H. Spohn, Phys. Rev. A 46:844 (1992). 
21. C. R. Doering and D. ben-Avraham, Phys. Rev. Lett. 62:2563 (1989). 
22. M. N. Barber, In Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and 

J. Lebowitz, eds. (Academic Press, New York, 1983), p. 145. 
23. P. Christe and M. Henkel, Introduction to Conformal Invariance and Its Application to 

Critical Phenomena (Springer, Berlin, 1993), Chaplet 3. 
24. P. Argyrakis and R. Kopelman, Phys. Rev. A 41:2114 (1990). 
25. M. Hoyuelos and H. O. Mfirtin, Phys. Rev. E 48:3309 (1993). 
26. C. R. Doering and D. ben-Avraham, Phys. Rev. A 38:3035 (1988). 
27. M. A. Burschka, C. R. Doering, and D. ben-Avraham, Phys. Rev. Left. 63:700 (1989). 
28. C. R. Doering and M. A. Burschka, Phys. Rev. Lett. 64:245 (1990). 
29. J. Lin, C. R. Doering, and D. ben-Avraham, Chem. Phys. 146:355 (1990). 
30. J. Lin, Phys. Rev. A 44:6706 (1991). 

822/78/5-6-18 



1470 Krebs e t  al .  

31. V. Privman, Phys. Rev. E 50:50 (1994). 
32. J. Spouge, Phys. Rev. Lett. 60:871 (1988). 
33. L. Peliti, J. Phys. A: Math. Gen. 19:L365 (1986). 
34. M. Droz and L. Sasvhri, Phys. Reo. E 48:R2343 (1993). 
35. E. Barouch, B. M. McCoy, and M. Dresden, Phys. Reo. A 2:1075 (1970). 
36. E. Barouch and B. M. McCoy, Phys. Reo. A 3:786 (1971). 
37. M. Suzuki, Prog. Theor. Phys. 46:1337 (1971). 
38. J. D. Johnson and B. M. McCoy, Phys. Reo. A 6:1613 (1972); M. Takahashi, Prog. Theor. 

Phys. 50:1519 (1973); 51:1348 (1974); M.L~scher, NucL Phys. B 117:475 (1976); 
I. Affleck, In Fields, Strings and Critical Phenomena, E. Br6zin and J. Zinn-Justin, eds. 
(North-Holland, Amsterdam, 1990), p. 563. 

39. C. R. Doering, M. A. Burschka, and W. Horsthemke, J. Star. Phys. 65:953 (1991). 
40. D. ben-Avraham, M. A. Burschka, and C. R. Doering, J. Stat. Phys. 60:695 (1990). 
4t. T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36:856 (1964). 
42. E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (NY) 16:407 (1961). 
43. H. Hinrichsen and V. Rittenberg, Phys. Lett. B 275:350 (1992). 
44. A. A. Lushnikov, Soo. Phys. JEPT64:811 (1986). 
45. J. G. Amar and F. Family, Phys. Reo. A 41:3258 (1990). 
46. L. Braunstein, H. O. Mhrtin, M. D. Grynberg, and H. E. Roman, J. Phys. A 25:L255 

(1992). 
47. V. Privman, J. Stat. Phys. 69:629 (1992). 
48. V. Privman, J. Star. Phys. 72:845 (1993). 
49. B. P. Lee, J. Phys. A 27:2633 (1994). 
50. M. A. Burschka, Europhys. Lett. 16:537 (1991). 


